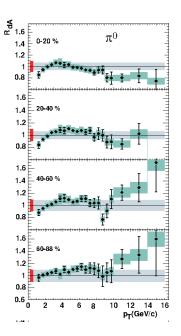
Cold nuclear matter effects in d+Au with high- p_T reconstructed jets at PHENIX

Dennis V. Perepelitsa Columbia University for the PHENIX Collaboration

Quark Matter 2012 Flash Talks Washington, D.C., USA 18 August 2012

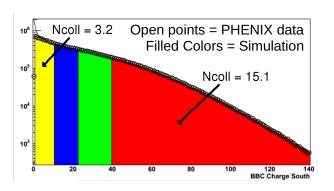


Cold nuclear matter effects

• p+A collisions are needed to establish a baseline for A+A:

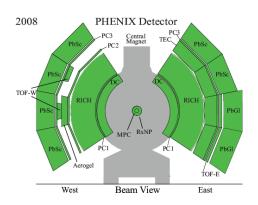
- \Rightarrow confirm that suppression in A+A is a final state effect
- ⇒ probes centrality dependence of nPDF's
- \Rightarrow tests pQCD & factorization at high x

• At RHIC, we perform measurements in d+Au

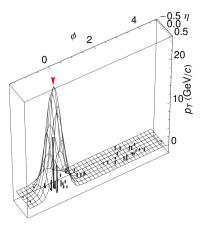


CNM for pions in 2003

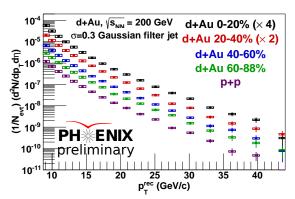
• π^0 measurement published by PHENIX:


- ⇒ Phys. Rev. Lett. 98, 172302 (2007)
- ⇒ data from RHIC 2003 run
- \Rightarrow weak centrality dependence in R_{dA}
- \Rightarrow low statistics at high- p_T

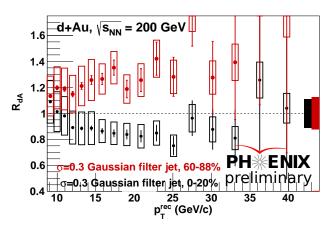
Data selection


- RHIC 2008 run, d+Au and p+p at $\sqrt{s_{NN}}=200$ GeV:
 - ⇒ 30x increase in statistics!
 - ⇒ Au-going beam-beam counter (BBC) used for centrality determination
 - \Rightarrow Glauber simulation used to calculate $\langle N_{\rm coll} \rangle$

Jets in PHENIX detector

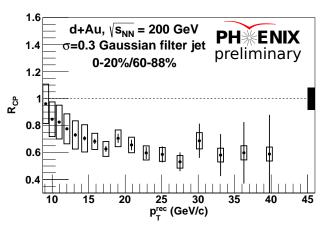

- Central arms, $|\eta| < 0.35$, $\Delta \phi = \pi$:
 - \Rightarrow charged tracks $p_{\rm T}^{\rm rec} > 400~{\rm MeV/c}$ in the Drift Chamber (DC), Pad Chambers (PC)
 - \Rightarrow neutral clusters $p_{\rm T}^{\rm rec} > 400$ MeV/c in the EMCal (EMC)

Jet Reconstruction: I


- Gaussian filter algorithm ($\sigma = 0.3$):
 - ⇒ continuous angular weighting, stable in HI background
 - \Rightarrow used successfully in p+p and Cu+Cu at PHENIX
 - \Rightarrow cross-checked with anti- $k_{\rm T}$ algorithm

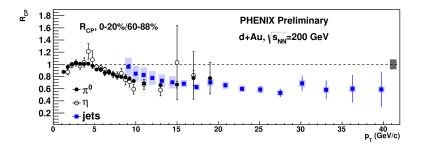
Jet Reconstruction: II

- Jets out to 40 GeV/c are reconstructed at the detector energy scale:
 - \Rightarrow bin-by-bin unfolding to correct for p_{T} increase from mild $d+\mathsf{Au}$ UE
 - \Rightarrow small residual fake rate (< 5%) above > 9 GeV/c


Jet $R_{\rm dA}$

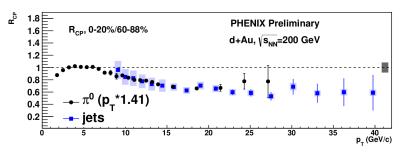
- Mild suppression in **central events** at high- $p_{\rm T}$
- Moderate enhancement in **peripheral events** at high- p_{T}
 - ⇒ unexpected result!

Jet $R_{\rm CP}$


Another way to look at the central/peripheral difference!

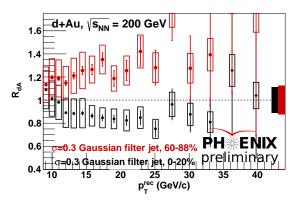
- significantly reduced systematics
- cleaner measurement of relative centrality dependence

Jet and new π^0 $R_{\rm CP}$


• Preliminary π^0/η measurement with 2008 data

... but hadrons & reconstructed jets have different p_T-scale...

Jet and new π^0 $R_{\rm CP}$: Rescaled


• Scale single hadron p_T by $1/\langle z \rangle$ using empirical $\langle z \rangle = 0.7$:

- Excellent agreement in shape between jets and hadrons
 - ⇒ very different systematics
 - ⇒ large difference in behavior between central vs. peripheral collisions **not** an artifact of jet reconstruction

Conclusion

- Gaussian filter reco jets in RHIC 2008 d+Au and p+p
- We observe a large centrality dependence in R_{dA} at high- p_{T}
 - ⇒ small suppression in central
 - ⇒ moderate enhancement in peripheral
- Challenging to simultaneously explain both!

